
1. Introduction

Spherical acoustic resonators [1] have been success-
fully applied to measurement of the universal gas
constant [2] and to gas thermometry [3-7]. The radial
(0, n) acoustic modes are well-suited for high-accuracy
work because they are non-degenerate, well separated,
insensitive to visco-thermal boundary effects, and only
weakly dependent on the details of small shape imper-
fections [1,8,9]. Nearly-spherical resonators, now
referred to as quasispherical resonators [10,11], have
been designed to facilitate the measurement of the
electromagnetic resonances for determination of the
mean radius of the quasisphere. The speed of sound can
be determined from the combination of measured
acoustic and electromagnetic resonance frequencies 

[12]. The acoustic and electromagnetic eigenvalues for
quasispherical resonators must be evaluated using
approximation methods. In this paper, boundary-shape
perturbation theory [13] is used to calculate the
acoustic eigenvalues.

An idealized rigid spherical resonator of radius a has
acoustic modes with the acoustic pressure proportional
to the eigenfunctions

(1)

where jA (ξ) is a spherical Bessel function and ϒAm is
a linear combination of spherical harmonics

(2)
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with coefficients αmµ chosen to make the ϒAm real. The
eigenvalues for the perfect spherical geometry are
kAn = ξAn /a, where ξAn is the nth root of j′A (ξAn) = 0.

The bounding surface of a quasispherical resonator
has the form

(3)

where ε is a scale parameter satisfying 0 < ε << 1 and
F is a smooth, non-negative function of θ and φ. The
A = 0 eigenvalues of a quasisphere differ from those of
a perfect sphere of the same volume by a fraction of
order ε 2 or higher [1, 8]. The non-radial acoustic modes
of a perfect sphere occur in rnultiplets of degeneracy
2A + 1. Typically, this degeneracy is split to order ε in
a quasisphere, but the mean eigenvalue of any multiplet
differs from the corresponding eigenvalue of a perfect
sphere of the same volume by an amount of order ε 2 or
higher [9]. The same is true of the electric and magnet-
ic modes of a quasisphere with perfectly conducting
walls [12].

In principle, a highly accurate measurement of the
speed of sound in a gas can be made by measuring the
acoustic and electromagnetic resonance frequencies of
the same quasisphere. Geometric contributions to the
error will then be of order ε 2. If the shape is known,
higher accuracy can be obtained if the theoretical coef-
ficients of the ε 2 perturbation terms can be calculated.
This has already been achieved for the radial acoustic
modes [8]. A corresponding theory for the electromag-
netic modes, a subject of current research by the author,
is much more complex, and is closely related to the
theory of the second order shape perturbation theory for
the non-radial acoustic modes, as developed in this
paper. The results derived here will be useful in exper-
imental studies of quasispheres which will compare the
effects of shape on the acoustic and electromagnetic
spectra. Also, the results enable the use of the lowest-
frequency acoustic modes, the 11m triplet, to be used
for high-accuracy work.

2. Formalism

Morse and Feshbach [13] (MF hereafter) present a
formalism for calculating the eigenfrequencies of an
acoustic cavity resonator C enclosed within an unper-
turbed cavity C0. Figure 1 illustrates the geometry; the
surfaces enclosing C and C0 are designated S and S0,
respectively, and the region between C and C0 is desig-
nated C'. The unperturbed cavity has a set of eigenfunc-
tions ΦN and eigenvalues kN

2 , satisfying the Helmholtz
equation

(4)

in C0 and the Neumann boundary condition

(5)

on S0. (For brevity, the subscript N in these equations,
and other subscripts in capital letters, are used to repre-
sent sets of lower-case mode indices.)

The perturbed problem is defined by a surface S
enclosed within S0, and enclosing a cavity C. The per-
turbed problem satisfies

(6)

in C and the Neumann boundary condition

(7)

on S. A second-order expression for the perturbed
eigenvalue k2 is [MF Eq. (9.2.53)]

(8)

where

(9)

and

(10)

A more useful computational form for the integrals
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Fig. 1. Perturbed cavity C (boundary S) within unperturbed cavity
C0 (boundary S0). The region between C and C0 is designated C′.
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(9) can be obtained by applying the divergence theorem
to ΦP∇ΦQ ± ΦQ∇ΦP in C to obtain

(11)

(12)

A negative sign occurs in these expressions because
the outward normal from C' on S is – n̂. For Eq. (12),
use was made of the the orthogonality of the unper-
turbed functions in C0 for p ≠ q:

(13)

An expression for the diagonal terms follows
directly from Eq. (11): 

(14)

This is an integral over the region between S and S0

of a quantity proportional to the difference between the
potential energy and the kinetic energy. The correspon-
ding term for the perturbation of the electromagnetic
modes has the same form [12]. An expression for the
off-diagonal terms can be obtained from the sum of
Eqs. (11) and (12):

(15)

3. Deformed Spherical Resonator

Consider a deformed spherical resonator with a
boundary surface S defined by Eq. (3).

When applied to a quasisphere with S defined by
Eq. (3), the volume C', and accordingly the integrals in
Eqs. (14) and (15) are of order ε. Equation (8) can then
be solved iteratively to obtain

(16)

To evaluate Eq. (16) to order ε 2, the numerator of the
first term on the right must be calculated to O(ε 2), the
denominator to O(ε ), the coefficients ANP in the sum
term to O(ε ). The normalization constants in the
denominator of the sum term need only be calculated to
O(1).

The acoustic modes of a perfect spherical resonator
occur in multiplets with (2A + 1)-fold degeneracy. Only
the A = 0 radial modes are nondegenerate. When calcu-
lating the perturbation series for nonradial modes, the
coefficients αmµ in Eq. (2) should be chosen to make the
coefficients APQ zero for the modes with kP = kQ.
Equation (12) shows that ANP = APN exactly for degen-
erate pairs, so the proper choice of coefficients αmµ can
be obtained by diagonalizing the submatrix [ANP] link-
ing the multiplet terms.

More precisely, the off-diagonal terms of this sub-
matrix must be of order ε 2. Consider the application of
Eq. (8) to the multiplet components. The first-order
perturbation shift of each component is of order ε .
In an iterative solution of Eq. (8) the order of the
terms in the denominator of the sum terms would be
NPP = O(1), k2 – kN

2 = O(ε), and APP = O(ε). The numer-
ator is the square of ANP – (k2 – kN

2 ) NPN. Both k2 – kN
2

and NNP are of order ε, so if ANP = O(ε 2) the numerator
will be of order ε 4, and the entire sum term of order ε 3.

To get the first term in Eq. (16) to O(ε 2), the numer-
ator must be calculated to O(ε 2), and the denominator
to O(ε ). The thickness of the integration volume C' in
Eq. (14) is of order ε , so the integrand of the numera-
tor is needed to O(ε ). Within C' the radial derivative of
the spherical Bessel function is of order ε so the func-
tion itself satisfies

(17)

Integrals NPQ with P ≠ Q do not appear in Eq. (16),
only normalization integrals for which the repeated
indices are superfluous. The notation can hence be
simplified by using an ordinary math font for N and
a set of lower-case indices to designate the mode. In
the new notation, the normalization integral in the
denominator is

(18)

which can be evaluated as the difference between an
integral from r = 0 to a and an integral from rS to a to
obtain, for Anm ≠ 010,
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(19)

For the special case nAm = 010, the eigenfunction is
j0(k01r) = 1 and the eigenvalue is ξ01 = 0. The normal-
ization constant is

(20)

which differs from Eq. (19) by a factor of 2/3.
The function F may itself depend on the scaling

parameter ε; it is useful to make this explicit:

(21)

The first term in Eq. (16) then has the form

(22)

(Note that, the operator r∇∇ appearing in this expression
involves only angular derivatives.) The coefficients
(15) in the perturbation series are only needed to O(ε),
so the integrand is only needed to O(1); only the lead-
ing order of Eq. (18) is needed in the denominator. The
sum in Eq. (16) simplifies to

(23)

where

(24)

The sum over n′ in Eq. (23) is

(25)

where the prime on the summation symbol indicates

the omission of the terms with A'ν = An. The sums are
evaluated analytically in the Appendix using the
technique of Ref [8]. The results for A' ≠ 0 are

(26)

and, for A′ = 0,

(27)

The full sum in (16) is thus

(28)

where the last term is 1/3 of the contribution from the
010-mode, which has a special normalization; 2/3 of the
contribution of this term is included in the sum term.

3.1 Reference Eigenvalues
In order to separate out the effects of shape from the

effects of volume, the perturbed eigenvalues k2 will be
compared with the eigenvalues (k′Anm)2 of a reference
sphere of the same volume V as the perturbed sphere.
The fractional difference equals

(29)

where (ka')2/ξ2
An, is the product of (a'/a)2 and the sum

of 1 and the series on the right side of Eq. (16).
The ratio of the volume V = 4π(a')3/3 to the volume
V0 = 4πa3/3 of the unperturbed sphere is

(30)
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where the triangular brackets indicate an average over
solid angle. The ratio of the squared radii is

(31)

The desired fractional difference is

(32)

where the term coupling to the 01-mode has been made
explicit.

3.2 Series Evaluation
Identification of the contributions to the coefficients

is facilitated by expressing the shape as

(33)

Equation (24) then involves linear combinations of
terms of the forms

(34)

and

(35)

where Eq. (35) was obtained using the technique
described in the Appendix of Ref [9]. Alternatively,
Eq. (35) can be derived using the raising and lowering
angular momentum operators (see, e.g. Ref [14]). The
bracket expressions (34) vanish unless the following
conditions are satisfied:

(36)

(37)
(38)

It is clear from Eqs. (2), (34), and (35) that
be expressed as a linear combination of bracket ex-

pressions (34) with | m′ | ≤ A′ and | m |≤ A. Accordingly,
it is possible to identify the terms that can possibly con-
tribute to non-varnishing values of
the following rules:

1. First look at the non-vanishing cλµ in Eq. (33).

2. For the unperturbed mode index A, look at each
expansion-coefficient index λ and find the
values of A′ satisfying the conditions of Eqs. (36)
and (38).

3. Note that the coefficients αmµ′ in Eq. (2) are
often non-zero only for µ′ = ±m. Consider the
possible terms; then for each unperturbed mode
index m, and expansion coefficient index µ find
the value of m' satisfying Eq. (37).

4. Once the possible non-vanishing coefficients

the coefficients can be carried out using symbol-
ic algebra software.

4. Examples
The second order perturbations of the A = 0 radial

modes and the three-fold degenerate A = 1 modes are
worked out in this section for prolate and oblate ellip-
soids. and for triaxial ellipsoids.

The eigenfunctions of the unperturbed A = 0 modes are
(39)

The appropriate A = 1 unperturbed eigenfunctions
for any quasi-spherical resonator that has its major axes
aligned with the 
j1(k1nr) and

(40)

for which the submatrix with components A1nm,1nm′ is
diagonal in mm'.

4.1 Prolate Spheroid
For a spheroid of semi-major axis a and semi-minor

axes b = a/(1 + ε), with ε > 0, the radial coordinate is
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(41)

(42)

for which

(43)

The shape function F0 is an exact linear combination of
Y00 and Y20. Accordingly. for the radial modes, the con-

A′=1 and A′ = 3.

4.1.1 A = 0 Modes

The non-vanishing coefficients are

(44)

Evaluation of Eqs. (79) and (78) yields

(45)

where the latter was obtained using the condition
j0′ (ξ0n) = – j1 (ξ0n) = 0 and recurrence relations for the
spherical Bessel functions. Evaluation of the perturba-
tion series (32) yields

(46)

in agreement with Eq. (30) of Ref [8].

4.1.2 A = 1 Modes
Equation (22) is

(47)

The non-vanishing coefficients are

(48)

From Eqs. (74) and (72), the required sums are

(49)

the latter following from recurrence relations for
the spherical Bessel functions and the condition
j1′ (ξ1n) = 0. Substitution of Eqs. (43) and (47)–(49) into
Eq. (32) yields

(50)

and

(51)

The scalar Helmholtz equation separates in
spheroidal coordinates, so the acoustical eigenvalues
can be determined by direct numerical calculations
[15]. The eigenvalues calculated numerically for a
series of values of ε are compared with Eqs. (50) and
(51) in Figs. 2 and 3.
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The average eigenvalue perturbation for the
1n-triplet is, from Eqs. (50) and (51),

(52)

which has no linear term, consistent with the general
results derived in Ref [9].

4.2 Oblate Spheroid
For an oblate spheroid of semi-major axis a and

semi-minor axes b = a/(1 + ε), ε > 0, the radial coordi-
nate is

(53)

with

(54)

for which

(55)

The perturbation calculations for the A = 0 and A = 1
modes parallel those for the prolate spheroid and will
not be reproduced in detail here. The final expression
for the eigenvalue perturbations for the radial modes is
exactly the same as the result for the prolate spheroid
[Eq. (46)]. For the A = 1  modes the fractional perturba-
tions are

(56)

(57)
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Fig. 2. Comparison of perturbation series (lines) for prolate spheroid
with exact numerical solutions (symbols).

Fig. 3. The absolute difference between the exact numerical eigen-
values k 2

num and the predictions k 2
pert of Eqs. (50) and (51) plotted as

a fraction of k 2
ln ≡ (ξ1n/a′)

2, as functions of ε. The dashed line, intend-
ed as a guide to the eye, is proportional to ε 3. The plots show that the
differences are approximately proportional to ε 3. The numerical
values exceed the perturbation values for the 111 mode over the full
displayed range, and for the 140 mode for ε < 0.025; for all other
cases the difference is negative.
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Exact solutions for the oblate spheroid [16] were calcu-
lated and compared with Eqs. (56) and (57). The agree-
ment, like the corresponding agreement for the prolate
spheroid, is very good. The plots resemble Figs. 2
and 3.

The mode average is exactly the same as Eq. (52) for
the prolate spheroid.

4.3 Triaxial Ellipsoid
The surface of the triaxial ellipsoid defined by

(58)

can be expressed in the form of Eq. (3) with

(59)

and

(60)

The shape F0 is an exact linear combination of Y00,
Y20, and Y2,± 2. The non-vanishing values of
accordingly limited to the same values of A′ as for the
spheroids.

4.3.1 A = 0 Modes
The non-vanishing coefficients are

(61)

Evaluation of the perturbation series (32) yields

(62)

The correctness of this result was checked by calcu-
lating the radial-mode eigenvalues of a triaxial ellipsoid
using a finite-element method. The parameters ε1 and ε2

were varied, with the ratio held constant at ε1/ε2 = 2.
Figure 4 shows that the difference between the finite-
element results and Eq. (62) is cubic in ε 3.

4.3.2 A = 1 Modes
The non-vanishing coefficients

for brevity,

(63)

The fractional perturbations for the 1nm modes have
the form

(64)
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3 was fit to the plotted points.
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where

(65)

These equations have the appropriate limits when
either ε l or ε2 is zero. The mode average is

(66)

The correctness of Eqs. (64) and (65) was tested by
calculating the modes of a triaxial ellipsoid using the
finite-element method. The parameters ε l and ε2 were
varied, with the ratio held constant at ε l/ε2 = 2. This
choice corresponds to a uniform splitting of the triplet
(the case considered in Ref [10]) as shown in Fig. 5.

Figures 5 and 6 show the close agreement of the
eigenvalues determined with the finite-element method
and Eqs. (64) (65).

5. Concluding Remarks

The formalism derived in this article can be applied,
in principle, to arbitrary quasi-spherical resonators
whose shape can be represented by Eq. (3). Section 3.2
lists the general principles that determine the possible
contributions to the general series (32). Once the possi-
ble terms are identified, the use of symbolic algebra
software can be used to calculate the terms. For increas-
ingly complex shapes, this process should be pro-
grammed so as to minimize human error.
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Fig. 5. Fractional eigenvalue perturbations for the 11 m modes: the
points are numerical results determined with the finite-element
method, the lines represent Eqs. (64)–(65) for an ellipsoid with
ε 2 = ε1/2. The key identifies the lines by the value of the index m.

Fig. 6. The differences between the values of k 2
fem determined with the

finite-element method for the 11 m modes and the predictions k 2
pert of

Eqs. (64)–(65) for an ellipsoid with ε 2 = ε1/2. The lines proportional
to ε1

3 were fit to the plotted points. The key identifies the lines by the
value of the index m.



6. Appendix. Evaluation of Infinite Sums

The sum SAnA′ defined by Eq. (25) can be evaluated
explicitly. For the case A′ ≠ 0, consider the contour
integral

(67)

where C is a rectangular contour with corners at
(± xN, ±y0), with y0 > 0 and xN sufficiently large that N
zeros of j ′A′ (ξ) lie along the positive real axis within
C. The integrand is bounded on C, so the integral
approaches zero as N →∞; the sum of all residues
within the contour is also zero in this limit.

The integrand has poles at

When A′ ≠ A the poles are all
first order, with residues

(68)

(69)

and

(70)

The sum of all residues R(±ξA′µ) is –2SAnA', so the condi-
tion that the sum of all residues is zero implies

(71)

or

(72)

When A' = A the pole at ξAn is second order, with residue

(73)

and the sum of the series is

(74)

Next consider the case A' = 0. The second factor in
the integrand of the contour integral is then unity; the
residues are

(75)

and

(76)

There is a single pole at ξ01 = 0, so the sum of all
residues is

(77)

which implies

(78)

When A = 0 the (distinct) poles at ±ξ0n are second order;
the residues are –3/(4ξ 2

0n), so the sum is

(79)
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